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The interaction and merger of a pair of co-rotating vortices has been studied
experimentally in a wind tunnel. The vortices are generated using two separate wings,
allowing both initial circulation ratio and initial separation to be varied. At the
nominal test speed of 30 m s−1, the circulation-based Reynolds number is typically
6.4 × 104. Mean crossflow velocities at stations downstream are obtained with a
traverse-mounted yaw meter. The vortex interaction is characterized by fitting Lamb–
Oseen profiles to the measured, azimuthally averaged, tangential velocity profiles.

It is found that the merger process differs in several important respects from lower-
Reynolds-number studies. First, the separation of the vortices decreases continually
throughout the initial, ‘viscous growth’, phase, instead of remaining constant. Second,
the vortex core growth in this phase appears to be greater than can be accounted
for by turbulent diffusivity, even after correcting for the effects of wandering. Finally,
the time to merger lies well below that predicted by expressions based on the lower-
Reynolds-number observations, and is further reduced when the circulation ratio
departs from unity. We conclude that the enhanced core growth is probably due to
the short-wavelength ‘elliptic’ instability that has already been observed in some high-
Reynolds-number experiments. The mechanism behind the decrease in separation,
which is a crucial factor in the reduced merger time, is three-dimensional, but, beyond
this, remains unknown.

1. Introduction
A body which moves through a fluid and generates a force normal to the free-

stream direction will shed a vortical wake. In the context of aircraft, this results in
the well-known trailing vortex pair, often visible as a ‘contrail’. A following aircraft
flying into the vortices will experience significant, and potentially disastrous, changes
in altitude (Crouch 2005). Thus the frequency with which aircraft can use the busiest
airports is in large part limited by the requirement to avoid such an encounter by
maintaining a safe separation. Unsurprisingly then, there are significant motivations
to reassess the separation criteria, but to do so safely requires a deeper understanding
of the problem than currently exists. (For reviews of research to date see Spalart 1998
or Rossow 1999.)

An essential starting point is the ability to predict trailing vortex topology far
downstream. A simplified trailing vortex pair model, as in figure 1(a), is often used
to describe this structure. In fact, this is a reasonable approximation only for cruise
conditions, when the hazard is not a serious concern. A more realistic wake is shown
in figure 1(b); a vortex is shed wherever there is an inflection point in the spanwise
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Figure 1. Illustrations of the character of aircraft trailing wake vortices. The idealization of
a single trailing tip vortex (a) gives way to the more realistic description of a vortex sheet
shed from the wing, (b). This sheet typically rolls up into coherent vortex structures. During
high-lift configurations, this typically means two co-rotating vortices per wing, from the tip
and the outboard flap, (c) and (d) Burnham & Sullivan (1973).

lift distribution curve. On a modern wing operating in high-lift configuration, this
includes the wing tips, flap and control surface edges, engine nacelles, and the body.
Vortices can also be shed from the empennage. Most of these smaller vortices roll
up together quite rapidly. However, it is usual for the two strongest – from the wing
tip and the outboard flap – to survive this process. (Figures 1(c) and 1(d) show these
vortices in conditions sufficiently humid for condensation to render them visible.)
When (if) they merge, and how they do so, is an important issue in the determination
of an aircraft’s far-field wake.

Numerical modelling of wake vortex merger is arduous, as it requires a fine spatial
resolution in the crossflow plane and a very long domain in the streamwise direction.
To date, we are aware of no fully three-dimensional numerical studies of this problem
(though Czech et al. 2005 have successfully simulated wind-tunnel-scale experiments
with a parabolized, Reynolds-averaged Navier–Stokes code). A closely related and
much more tractable topic is the merger of co-rotating two-dimensional vortices (see
for example Jimenez, Moffatt & Vasco 1996) and it has consequently given rise to a
sizeable body of work. For a pair of identical, inviscid, two-dimensional co-rotating
vortices there is an initial separation, d0, beyond which they never merge. Viscous
vortices starting in this regime initially maintain a constant separation, but growth
of the core radius, rc, serves to decrease the normalized separation, d0/rc, over a
time proportional to the flow Reynolds number (Meunier, Le Dizès & Leweke 2005;
note, however, that Huang 2005 has queried the universality of this scaling). Once this
diffusion phase brings the pair of vortices to a critical normalized separation, the cores
start to interact directly and merger occurs. Numerical predictions by Christiansen
(1973), Rossow (1977), and Melander, Zabusky & McWilliams (1988) suggest that
the critical value is d0/rc ≈ 3.4. Subsequent experimental investigations by Meunier
et al. (2002) have confirmed these predictions. (Related work by Meunier & Leweke
2005, however, shows evidence of three-dimensional instability during the merger of
two-dimensional vortices at higher Reynolds numbers, and this short-wave, or ‘elliptic’,
instability has now also been successfully described theoretically by Le Dizès &
Laporte 2002 and Bristol et al. 2004.)

In practice, of course, the case of identical vortices is rather singular. Dritschel &
Waugh (1992) thus simulated the interaction of two patches of equal, uniform vorticity
but differing radii. A much richer range of qualitative behaviour was observed, even
for small changes in radius ratio. This feature may, however, be an artefact of
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the vorticity distribution chosen, as more recent computations by Trieling, Velasco
Fuentes & van Heijst (2005) with continuous distributions show features closer to the
equal vortex case. Where both works agree is in the prediction of ‘straining out’ of
the weaker vortex around the stronger when the inequality is significant.

The first attempt to characterize the merger of trailing vortices experimentally
was by Brandt & Iversen (1977). They argued that the distance to merger, dm, should
depend on the vortex circulations, Γ01 and Γ02, core sizes, rc1 and rc2, initial separation,
d0, and the free-stream velocity, U . They further suggested that the process could be
regarded as quasi-two-dimensional, and thereby replaced dm with an equivalent time,
tm = dm/U . Then, on dimensional grounds,

tm =
d2

0

Γ01

f

(
Γ01

Γ02

,
rc1

rc2

,
d0

rc

)
. (1.1)

Although their experimental observations were restricted to flow visualization, the
results supported a relationship of this form. Strangely, however, the span and chord
of the wings used to generate the vortices were introduced to non-dimensionalize
their data, so one cannot deduce the specific form of equation (1.1) that is implied.
Other contemporary wind tunnel test results (e.g. Corsiglia, Rossow & Ciffone 1976
and some of the work summarized by Rossow 1999) are similarly restricted to
qualitative data. Attempts at measuring wake vortices in flight tests have also been
made (Iversen 1976; Gardoz & Clawson 1993; Roberts, Vicroy & Smith 2000) but,
while they have the advantage of realistic conditions and full-scale (circulation-based)
Reynolds number, ReΓ = Γ0/ν, they have again been compromised by lack of, or
uncertainties in, quantitative data.

Among more recent laboratory studies, we have already noted that Meunier et al.’s
(2002) two-dimensional experiments agree with the numericists’ view of merger. This
picture is also supported by Cerretelli & Williamson (2003), whose towing tank study
used two cambered-plate wings to generate a pair of trailing vortices. They identified
a Reynolds-number-dependent diffusive phase, with core sizes growing while the
vortices orbit at constant separation, a merger phase consisting largely of convective
behaviour but completed by axisymmetrization in a ‘second diffusive stage’, and
finally a merged diffusive phase. This description was found to apply equally to
laminar (ReΓ < 530) and turbulent (853< ReΓ < 1665) vortices, as long as a turbulent
diffusivity and a different convective merger time were employed in the latter case.
The laminar merger times also showed good quantitative agreement with Meunier
et al.’s results (for laminar vortices with 700 <ReΓ < 2300). No turbulent vortex data
at comparable Reynolds numbers are available elsewhere; however, we note that a
change in (dimensionless) convective merger time seems to contradict the idea of a
phase which is independent of diffusive effects. Additionally, the proposed expression
significantly over-predicts the data of Chen, Jacob & Savas (1999), obtained from
towing tank studies of flapped, cambered-plate wings. They find a dimensionless time
to merger around 0.8 for a wide range of flap/tip vortex circulation ratios at Reynolds
numbers ReΓ ≈ 5 × 104. In contrast, Cerretelli & Williamson’s convective phase alone
lasts 0.81 dimensionless time units, and their overall prediction would be roughly
double this value. Chen et al.’s work also shows an important qualitative difference in
the first diffusive phase, in that separation distance starts to decrease as soon as the
vortices are formed, well before the onset of the merger phase. From consideration of
the evolution of the vorticity field variance (and higher-order moments), Chen et al.
infer significant three-dimensional activity throughout their experiments; however,
similar short-term variations in the moments also appear in the field of the isolated
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tip vortex shed by a flap-less wing, so it is unclear whether these particular fluctuations
can be linked to merger. Furthermore, once all the flow vorticity is captured in the
measurement window, the moments never increase in the long term, and the decreases
seen could perhaps be due to diffusive effects. Unfortunately, no data for core size
evolution are given in the paper, so the significance of such effects is not known.

More concrete evidence of three-dimensionality during merger is found in the
experiments of Bristol, Ortega & Savaş (2003). Here flow visualizations clearly show
the presence of the short-wave instability that Meunier & Leweke (2005) observed
at their highest Reynolds number. On the basis of these results, Jacquin et al.
(2005) attribute high-Reynolds-number vortex merger exclusively to this mechanism.
While this assertion perhaps requires further supporting evidence, it does seem that
extension of the low-Reynolds-number description to the high-Reynolds-number case
via a turbulent diffusivity is an oversimplification.

In summary, then, high-Reynolds-number (ReΓ ∼ 105) results appear to show
departures from the consensus view of vortex merger that has been developed on
the basis of experiments and simulations at ReΓ ∼ 103. Apart from the implication
of three-dimensional instability in the merger phase, there are also important
discrepancies in the initial, co-rotating phase. Specifically, Chen et al.’s (1999)
measurements suggest that it is shorter than the diffusive model would predict,
and is no longer characterized by constant vortex centre separation. However, the
use of flapped wings introduces the additional (albeit more realistic) complications
of a wake generated by a single wing lift distribution: differing circulations and core
sizes, a connecting vortex sheet, and an imposed strain field due to the vortices on the
other side of the symmetry plane. Devenport, Vogel & Zsoldos (1999) have conducted
experiments at similar Reynolds numbers with vortices generated by separate wing
tips, but they were more interested in turbulence characteristics pre- and post-merger,
and hence took measurements at only a few crossflow planes. (They did, however,
observe a 25% reduction in separation during the pre-merger orbital phase.) Further
data from this type of configuration and Reynolds number range seem called for.
The object of this work is therefore to revisit Brandt & Iversen’s (1977) experiment
in a quantitative, and more extensive, manner. We also seek to extend the results to
the case of vortices with differing circulations.

The structure of the paper is as follows. In § 2 we describe our experimental
apparatus (including the rotary yaw meter used to measure wake velocities), and the
calculation of vortex characteristics derivable from the velocity field. The downstream
evolution of these characteristics in the merger of equal-strength vortices is discussed in
§ 3. The extent to which this behaviour is modified by inequality in vortex circulations
is then described in § 4. The implications for the role of three-dimensionality are
addressed specifically in § 5, and the overall conclusions of the study are summarized
in § 6.

2. Experimental apparatus and data analysis
The vortex interaction was studied in a wind tunnel. The tip vortices shed from two

lifting wings were measured using a single-tube yaw meter mounted on a two-axis
crossflow plane traverse. The longitudinal position of the traverse was fixed, and the
vortex-generating wings were shifted longitudinally in one-chord increments to study
the streamwise development of the interaction. Finer variations in streamwise location
were achieved by moving the yawmeter in its mounting. The overall experimental
arrangement is shown in figure 2.
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Figure 2. Sketch illustrating the general arrangement of the experimental apparatus. The
vortex-generating wings are arranged for the nominally equal case presented in § 3.2.

The closed-circuit, low-speed wind tunnel has a test section which is 1.68 m wide
by 1.22 m high and – in the current configuration – has a usable length of 2.8 m.
Tapered chamfer sections are used to prevent a longitudinal pressure gradient due
to wall boundary-layer growth. The empty tunnel turbulence intensity was measured
to be 0.15% at the test condition of 30 m s−1. The coordinate system is depicted in
figure 2; the origin is fixed at the centreline of the tunnel floor, level with the trailing
edge of the wings.

The vortices were generated using two identical NACA0012 section wings with a
constant chord of 0.152 m and a semispan aspect ratio of 5 (i.e. effective aspect ratio
10). Large endplates were fitted to avoid interference from the tunnel wall boundary
layer. The flat end-cap NACA0012 was chosen because the trailing vortex it sheds
is well-documented (see for example Brandt & Iversen 1977; Dacles-Mariani et al.
1995; Devenport et al. 1996, 1999) and it has been reported to roll up very quickly
into a tight coherent vortex (see for example Ramaprian & Zheng 1997; Anderson
et al. 2001; Spall 2001). The relative position and angle of attack of the wings could
be adjusted independently in discrete steps (for repeatability), allowing variations in
both initial vortex separation and relative strength. The typical resulting vortex had a
core radius of approximately 10 mm and a circulation of around −1.0 m2 s−1, resulting
in a circulation-based Reynolds number of 6.4 × 104.

A single-tube rotary yaw meter – broadly similar to the Chu-Tube (Chu et al.
1987) – was designed and implemented (see Bertényi 2001 for details). This device is
similar to a five-hole probe, but with a single chamfered tube rotated through four
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Figure 3. (a) A typical experimentally measured vortex depicted as contours of constant
vorticity starting at −500 s−1 in contour increments of −500. The circulation and azimuthally
averaged tangential velocity are plotted against increasing radius in (b). The bold circular
contour in (a) is that used in determining the vortex centre.

orthogonal positions and a sliding outer tube for the total pressure reading, resulting
in a measurement volume under 1 mm3. The pressure transducer was built into the
probe body and the pneumatic volume was kept to a minimum in order to provide
a rapid response. Probe actuation, timing, and measurement were optimized so as to
complete a single measurement cycle in 760 ms.

The two-axis traverse was located at the end of the test section and driven by
a DC Servo system with position feedback, providing location accuracy to within
±0.005 mm. A typical survey covered 230 mm × 230 mm with a 3 mm grid spacing,
and provided both crossflow velocity components and position information. These
data were numerically differentiated, using a centred-difference approximation, to
estimate the streamwise vorticity, ωx . The errors associated with this process are
discussed by Graham, David & Bertényi (2004), who give the maximum absolute
vorticity discrepancy as 2

√
2�vc/∆, where �vc is the maximum crossflow velocity

error (5% for our probe), and ∆ the grid spacing. The uncertainty in the vorticity
estimate thus varies with position, and will be discussed on a case-by-case basis.

Global measures of the vortices were determined as follows. The location was
defined as the centre of an optimized circular contour, the optimum occurring when
the contour was positioned to maximize its circulation. (For a purely axisymmetric
vortex, this definition coincides with the peak vorticity, but this is not necessarily
true for a more general structure such as the distorted vortices in the final stages
before merger.) The contour radius was that corresponding to maximum azimuthally
averaged tangential velocity, where measurement errors should be least significant.
The circulation integral was evaluated using a trapezoidal approximation, with the
required velocities obtained from the experimental data via bi-linear interpolation.
A typical vortex located in this way is presented in figure 3(a), with the resulting
circulation and average tangential velocity estimates plotted against increasing radius
in figure 3(b). At the peak tangential velocity of approximately 18 m s−1, the maximum
vorticity error is about 850 s−1, i.e. almost two of the contours in figure 3(a). Away
from this radius, the value drops in proportion to the tangential velocity. Note also
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that the overall circulation of 1.2 m2 s−1 is about half of that expected at the wing
root (based on lifting-line theory). This figure is supported by a two-dimensional
roll-up calculation, which shows the remaining vorticity to be not yet captured at 3
chords downstream. As subsequent circulation data will show, it remains uncaptured,
presumably because the dynamics become dominated by the vortex–vortex interaction.

The measured vortex structure is well-represented by the Lamb–Oseen vortex model
(Saffman 1992):

Γ (r) = Γ0

(
1 − e−kr2)

(2.1)

where Γ0 is the circulation of the vortex and k is indicative of its length scale. (The
Lamb–Oseen vortex is a solution of the two-dimensional Navier–Stokes equations
when k =(4ν(t + t0))

−1.) The point of maximum tangential velocity and hence, by
definition, the vortex core radius, rc, can be found by differentiation, giving:

rc =

√
1.25643

k
.

The parameters k and Γ0 are determined by a nonlinear least-squares fit to the
measured tangential velocity data. The tangential velocity was used instead of the
circulation because it is weighted more towards the vortex core, where higher velocities
mean the accuracy of the data is better. The quality of the fit can be characterized
by the R2 parameter, defined as one minus the ratio of the mean-squared velocity
error to the mean-squared velocity (Bertényi 2001). For the data shown in figure 3(b),
R2 = 0.999. The streamwise variation of R2 is described later.

For the vorticity field as a whole, we define the centroid of vorticity, (Ȳ , Z̄), by

Ȳ =

∫
yωx dA∫
ωx dA

, Z̄ =

∫
zωx dA∫
ωx dA

(2.2)

and the second moment of vorticity, or dispersion length D, by

D2 =

∫
[(y − Ȳ )2 + (z − Z̄)2]ωx dA∫

ωx dA

. (2.3)

These integrals were evaluated directly from the estimated vorticity field, via
summation over the grid cells.

A potential problem with experimental studies of trailing vortices is vortex
wandering, a slow movement of the vortex core sometimes present in wind tunnel
experiments (Devenport et al. 1996). Green & Acosta (1991) note that this movement
means that any time-averaged point measurement is actually a weighted average in
both time and space, with clear ramifications for our wake survey method. Devenport
et al. (1996) observed wandering amplitudes between 7% and 30% of the core radius,
typically resulting in a 12% over-predicted core radius and a 15% under-predicted
maximum tangential velocity. They also showed that with Gaussian wandering any
vorticity distribution would tend to smear towards a Gaussian form. An ancillary
study of wandering levels in our facility is described in Appendix B.
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x = 3c 4c  5c  6c

x = 7c 8c  9c 10c

x = 11c 12c 13c 14c

x = 16c 17c 18c 20c

Figure 4. Sequence of equal vortices merging depicted using contours of streamwise vorticity,
where the contour increment is −500 s−1. The longitudinal positions of the frames are marked
in chord lengths. Merger is complete by 20 chord lengths downstream.

3. Merger of equal vortices
3.1. Physical features

The first case studied was that of two equal vortices. The generator wings were set
on opposite walls at the same angle of attack and with a fixed distance between the
wing tips. Over 70 wake surveys were made at longitudinal positions from 3 to 20
chords (0.46–3.05 m) behind the wing. The results of sixteen such surveys are collated
in figure 4. Note that the peak value of the maximum vorticity error (estimated from
the Lamb–Oseen fit parameters) is about 670 s−1 at 3 chords and 410 s−1 at 13 chords,
both of which are comparable to the contour spacing (500 s−1).

The two vortices co-orbit in an anticlockwise direction, completing just under one
and a half turns before merger. During this period the vortices draw together while
simultaneously increasing in size. This growth is termed ‘vortex blooming’ since, as
will be seen, it is not due to viscous diffusion. In the final stages before merger,
the vortices interact strongly and their initially clear, well-defined structures show
significant distortion. Once the vortices reach this final stage, merger occurs quickly.

The overall evolution can be categorized into three phases: the initial co-orbiting
of the vortices (x =3c → 13c), the actual merging process (x = 14 → 18c), and the
merged resulting vortex (x = 20c onwards). As the normalized separation approaches
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Figure 5. Behaviour of two equal co-rotating vortices during the initial interaction leading
up to merger. Data from 3 to 13 chord lengths downstream are shown. (a) Decrease in
separation. (b) Growth of vortex cores and the predicted core growth due to turbulent diffusion.
(c) Invariance of circulation. (d) Decrease in dispersion length.

d0/rc = 3 (approximately corresponding to x = 14c), the outer fringes of the vortices
start to overlap and by d0/rc = 2 (approximately corresponding to x =18c) the two
cores touch. Two chords further downstream, the direct interaction of the cores has
resulted in a single, axisymmetric, merged vortex.

These qualitative observations are broadly similar to those reported by others. In
particular, the largely undisturbed initial co-rotation accompanied by core growth,
followed by significant distortion of the vortices once critical separation is reached, and
subsequent rapid merger, have been observed by Devenport et al. (1999), Chen et al.
(1999), Meunier & Leweke (2005) and Cerretelli & Williamson (2003). However, only
the first two studies report a decrease in separation during the initial phase, while the
second pair explicitly characterize it as one of constant separation. Furthermore, by
the end the vortices already show significant distortion, and this distortion is oriented
differently from that previously observed in the merger phase. Finally, filamentation
is not unambiguously visible during merger. However, given the potential errors in
the vorticity estimates, we cannot definitively say that it is not present.

Quantitative analysis of the interaction rests on the Lamb–Oseen fit described in
§ 2. As soon as the wake has rolled up into a coherent vortex, approximately three
chord lengths behind the wing tip, the R2 statistic is typically 0.99 or better (Bertényi
2001). This strong agreement persists throughout the initial interaction. In fact, even
after extensive vortex distortion, the average azimuthal velocity still displays an R2

statistic of 0.98 or better.
The qualitative observations made previously are reinforced by the quantitative

characterization. In figure 5 the separation, core radius, circulation and dispersion
length of the vortices are shown up to 2 m downstream, after which the analysis
method can no longer easily distinguish them. (Recall that merger occurs at 3 m
downstream.)

In figure 5(a) the vortex separation is shown to decrease by over a third. This draw-
ing together is approximately linear with downstream distance and hence equivalent
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time. Simultaneously, the vortices grow in radius. The rate is at first slow, but then ac-
celerates as merger is approached. A Lamb–Oseen vortex is expected to grow with the
square root of time, rc =

√
4ν(t + t0), due to viscous diffusion. Spalart (1998) suggests

this would be enhanced by turbulent diffusion, giving rc ≈
√

8.2 × 10−4(t + t0) for the
current configuration. The growth observed in figure 5(b), however, is over twice what
this expression would predict: from approximately 8 mm to 12.5 mm instead of 10 mm.

The circulation of the vortices is not expected to change and figure 5(c) confirms
that it is effectively constant. Though not shown, the merged vortex has a strength
that is equal to the sum of the two constituent vortices.

Finally, the dispersion length, D, diminishes throughout the interaction (figure 5d).
This is entirely consistent with the theoretical result for the idealized flow:
D2 = (d0/2)2 + r2

c . Note, however, that it is not consistent with a two-dimensional
flow, where D remains constant for an inviscid fluid (Batchelor 1967) and increases
for a viscous one (Dritschel 1985).

3.2. Parameterization of the merger process

In order to parameterize the problem, it is necessary to vary the initial vortex
separation. This can be achieved with the configuration illustrated in figure 2, where
one wing is mounted on lateral rails on the tunnel floor. In total, seven different
initial separations were studied. The slightly asymmetric flow field arising from this
arrangement leads to different wing loadings. As a result, the circulation ratio between
the two vortices was not exactly 1.0 but, on average, 0.92. The corresponding vortices
are thus referred to as nominally equal.

To collapse data for the different initial separations, the progress towards merger is
now represented as a function of non-dimensionalized separation, d0/rc. Separation
decreases as merger is approached; thus the interaction progresses from right to left
when presented in these terms and, in the limit as a single merged vortex results,
d0/rc → 0.

Vortex core radii for both the nominally and exactly equal data sets are shown
in figure 6(a). For each pair of vortices, the instantaneous core radius is normalized
by the core radius for that data set at d0/rc = 4. This point in the evolution was
chosen as it is well into the vortex interaction, yet in a region where behaviour is still
consistent across all the data sets. All the results then collapse onto a single curve
despite the variations in circulation ratio and core radius. For example, at d0/rc = 4
the core radii in the data set vary from 7 mm to 14 mm. Both vortices in a pair
bloom at approximately the same rate. The rate of blooming is roughly constant up
to a non-dimensionalized separation of approximately d0/rc = 3.4; after this point it
increases as merger is approached.

In figure 6(b), separation normalized on that at d0/rc =4 is shown as a function
of d0/rc. Again, the entire nominally equal data set collapses onto a single trend. (At
d0/rc = 4 the non-normalized separations in the data set vary from 30 mm to 55 mm).
Separation is thus seen to decrease throughout the entire interaction for a wide range
of initial conditions, even at very large non-dimensionalized separations.

The dispersion length normalized on its value at d0/rc = 4 is shown in figure 6(c).
Here it is clear that the direct link to separation noted in figure 5 is not sustained
indefinitely. Below a non-dimensionalized separation of approximately 3.4, D remains
effectively constant. These two distinct phases in the interaction – also seen in
figure 6(a) – suggest a change in the underlying physics. Perhaps not coincidentally,
it occurs at the critical separation for two-dimensional vortex merger.
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Figure 6. Initial interaction and co-orbiting of nominally equal vortices. The stronger vortex
of the pair is indicated by +, the weaker by �. (a) Blooming of the vortex cores, normalized to
d0/rc = 4, (b) separation of the vortex cores, normalized to d0/rc = 4, and (c) dispersion length
normalized to d0/rc = 4, all as a function of non-dimensionalized separation.

Finally, we consider the time to merger of our vortex pairs. For two identical
vortices of circulation Γ0, equation (1.1) reduces to

tmΓ0

πd2
0

= f n

(
d0

rc

)
. (3.1)

Incorporating a factor of π results in the time to merger being normalized by the
orbital angular velocity for two point vortices, Ωpred = Γ0/πd2

0 . (This observation holds
for unequal vortices too, as long as Γ0 is defined as (Γ01 + Γ02)/2. We thus use the
latter form for the nominally equal cases.)

In principle, our experiments give only one data point for (3.1) from each wing
configuration. However, the set can be greatly extended by treating each measurement
plane as the source of a new value of d0/rc. This manoeuvre is justifiable as long as
the vortices providing our new ‘initial’ condition remain axisymmetric, and it allows
us to characterize the unknown function of equation (3.1) in much greater detail.

This non-dimensionalized time to merger for equal and nominally equal vortices is
presented in figure 7(a). The collapse of the data is not complete. In their experiments,
Chen et al. (1999) observed merger to occur within 0.78 × 2π dimensionless time units.
(They do not quote the corresponding d0/rc, but taking d0 as roughly the distance
between their wing’s flap edge and tip implies a value of around 5.) This result is
shown and provides reasonable agreement at separations of 5 and above.
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Figure 7. (a) The non-dimensionalized time to merger for equal and nominally equal vortices
as a function of non-dimensionalized separation. The dashed line indicates the fit of the data
of Chen et al. (1999). (b) The non-dimensionalized time to critical separation for equal and
nominally equal vortices as a function of non-dimensionalized separation. Data points shown
by × are from the equal data set presented in § 3.1.

However, as the overall collapse of the data is not entirely convincing we have
also investigated parameterizing the interaction using the time to critical separation,
defined as

tc =
(xc − x)

U∞
where (xc − x) is the distance to the point where d0/rc = 3.4. This gives a greatly
improved collapse, shown in figure 7(b). We hypothesize that this is linked to the
increase in data scatter at small normalized separations, which could be due to a
breakdown in the assumption of axisymmetry. This would then lead to variations
in the convective merger time, depending on the degree of asymmetry at the critical
separation.

4. Merger of unequal-strength vortices
Unequal-strength cases were generated by varying the angle of attack of the wings.

Two circulation ratios were investigated: 0.477 and 0.323.
The vorticity contour plots in figure 8 depict the interaction of unequal-strength vor-

tices with a circulation ratio of 0.477. Certain aspects are similar to the equal-strength
case; throughout the initial interaction the two vortices co-orbit, draw together and
show signs of blooming. A new feature, however, is the noticeable distortion of the
weaker vortex during this interaction. In this sense, the interaction appears similar to
the ‘complete straining out’ regime originally identified by Dritschel & Waugh (1992).
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x = 4c 5c 6c 7c

x = 8c 9c 10c 11c

x = 12c 13c 14c 15c

x = 16c 17c 18c 19c

Figure 8. Sequence of unequal-strength vortices merging, depicted using contours of constant
vorticity, where each contour is an increment of −500 s−1. The circulation ratio is 0.477.
The longitudinal distance between succesive frames is one chord length. Merging occurs at a
downstream position of 18 chord lengths.

Note, however, that the orientation of the distorted vortices is again different to
that seen in purely two-dimensional simulations. Finally, the actual merging process
(x = 16c to 18c) appears to take less time than for the nominally equal vortices.

These trends extend to the more extreme circulation ratio of 0.323 (not shown).
Here, the weaker vortex is so heavily distorted that it eventually appears to be almost
wrapped around the stronger. However, as previously, the averaged azimuthal velocity
continues to show a Lamb–Oseen profile well into the asymmetric stage.

The evolution of normalized core radius and separation for the entire unequal-
strength data set is presented in figure 9, and a curve fit of the nominally equal data is
also shown. The increased scatter in the data as merger is approached is a reflection
of the strong distortion of the unequal-strength vortices and an elevated degree of
unsteadiness. As with the equal-strength case, the successful collapse of figure 9(a)
shows that the rate of blooming is a function of how close the vortices are to merging.
An obvious difference, however, is that it varies between the two vortices: the weaker
vortices bloom faster than the stronger vortices. For example, between a normalized
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Figure 9. Initial interaction and co-orbiting of unequal-strength vortices. The equal-strength
data set is represented by a curve-fit to the data. (a) Blooming of the vortex cores, normalized
to d0/rc . (b) Separation of the vortex cores, normalized to d0/rc = 4.

separation of d0/rc = 10 and d0/rc = 2.5, the weaker vortices bloom from 50% of the
normalized value to 150%, and the stronger from 90% to 110%. The average rate
of blooming, although not shown, corresponds closely to that of the nominally equal
vortices. Additionally, and unexpectedly, the collapse appears to be independent of
the circulation ratio.

Separation is shown in figure 9(b) to decrease throughout the interaction. Up to
d0/rc = 5, the unequal vortices draw together at a rate that is slightly slower than the
nominally equal vortices. Also, although there is some scatter in the data, it appears
that the smaller-circulation-ratio pairs have a lower rate of decrease of separation.
After this point, the data sets seem to converge.

Other properties of the unequal-strength vortices behave similarly to the nominally
equal case. The circulations are conserved throughout the interaction and the total
circulation is present in the resulting merged vortex. The dispersion length initially
decreases, though to a lesser extent than before, and then remains constant from
d0/rc = 3.4 onwards.

The non-dimensionalized time to critical separation is presented in figure 10(b)
as a function of initial separation, for both circulation ratios. The equal-strength
behaviour is represented by two discontinuous curves fitted to the data before and
after the critical separation. The unequal-strength vortices reach the critical separation
somewhat more quickly. However, there is no clear difference between the two
circulation ratios. It is also interesting to note again the collapse onto a single curve,
despite the significant vortex asymmetry as the ‘initial’ conditions tend to the critical
separation ratio.
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Figure 10. (a) The non-dimensionalized time to merger for equal and unequal vortices as
a function of non-dimensionalized separation. (b) The non-dimensionalized time to critical
separation for equal and nominally equal vortices as a function of non-dimensionalized
separation. For clarity, the equal data set from figure 7 is represented by a curve fit.

While the time to critical separation shows a good collapse for all the data, it fails
to provide information on the time for merger to occur after the critical separation
is reached. Therefore, the non-dimensionalized time to merger is plotted for all three
circulation ratios in figure 10(a). Although the collapse is less good, a clear trend is
apparent; as the difference in strength between the two vortices increases, the distance
to merger decreases. Two nominally equal-strength vortices will take around twice as
long to merge as vortices with a circulation ratio of 0.323. This is in contrast to the
conclusions of Chen et al. (1999) whose data show no clear effect of circulation ratio
on the time to merger. However, their ratios are generally closer to one than ours; in
particular they only have one case below 0.40.

5. Discussion
In discussing our results, it is first useful to summarize our qualitative findings in

the light of earlier work. Most significantly, we observe a consistent and repeatable
decrease in vortex separation throughout the phase from formation until critical
normalized separation. This finding agrees with the experiments of Chen et al.
(1999) and Devenport et al. (1999), both at Reynolds numbers comparable to ours.
However, it contradicts the picture of vortex merger derived from two-dimensional
computations (e.g. Christiansen 1973; Dritschel 1985; Huang 2005; Melander et al.
1988) and supported by lower-Reynolds-number experiments (e.g. Meunier et al.
2002; Cerretelli & Williamson 2003).

Like all previous data sets quoting core radius, we find a continual increase in
this parameter as long as distinct vortices are identifiable. The extent of this increase
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could possibly be accounted for by a sufficiently large eddy viscosity (as suggested by
Cerretelli & Williamson 2003), but its characteristics are not unambiguously diffusive,
as the rate of growth appears not to decrease with time. Another potential cause
is the artificial increase due to vortex wandering. In Appendix B it is shown that
the RMS principal-axis wandering amplitudes, (σ1,σ2), are approximately (1.6,0.9) mm
and (3.0,1.8) mm at 5 and 13 chords downstream. Following the ‘rules of thumb’ given
by Devenport et al. (1996), we correct r2

c by 2.51σ 2
w , where σ 2

w = (σ 2
1 + σ 2

2 )/2. With
reference to figure 5, the core radii of 8.5 mm and 12.5 mm at 0.76 m and 1.98 m reduce
to 8.2 mm and 11.9 mm respectively. Although these corrections move the data closer
to the turbulent diffusivity curve, one must still postulate a significant (120%) increase
in eddy viscosity to attain agreement. This fact, and the qualitative observations of
increased unsteadiness as the critical separation is approached, suggest that the elliptic
instability also plays a role. At our Reynolds number, the analytical expressions given
by Meunier et al. (2005) predict that the vortex is linearly unstable throughout the
interaction (at least for identical vortices), with growth rate increasing from 3.9 to
6.1 times the inverse orbital period (3.0 to 4.8 times the inverse merger time) as d0/rc

decreases from 9 to 3.7. During the initial phase of the instability, time-averaged core
sizes should be unaffected, but its nonlinear development could well account for the
later divergence from the diffusivity curve.

Turning to the most succinct quantitative measure of the merger process, the
dimensionless time to merger, we find broad agreement with Chen et al.’s value
of 0.78 which, as noted earlier, differs significantly from Cerretelli & Williamson’s
proposed expression for high Reynolds’ numbers. However, support for this expression
at ReΓ > 2000 rests entirely on a single data point from Devenport et al. (1999),
quoted as 1.31 by Cerretelli & Williamson. Chen et al have cast doubt on this value,
suggesting that 0.94 is a better estimate. On calculating Devenport et al.’s circulation
from the amount of rotation seen in their data, we find a comparable value, about
0.8. It thus appears that equal-strength vortices do indeed merge within one initial
rotation period. (Note, however, that this does not fully justify the common rule
of thumb that such pairs always merge before completing a full rotation, since the
rotation rate speeds up as separation decreases; hence the almost 11

2
orbits visible

pre-merger in figure 4.) The agreement with Chen et al. also supports the application
of results from vortices generated separately to the more complex wakes behind wings
in high-lift configuration.

Our finding that distance to merger decreases as the circulation ratio departs
from unity is not easily tested in other data; only Chen et al. present results for a
significant number of circulation ratios, but their variation is achieved in part by
altering the Reynolds number too. Furthermore, their generation method (a flapped
wing) precludes the option of producing multiple data points at discrete values of
Γ01/Γ02, an approach which, given the scatter in figure 10(a), is probably necessary
to identify any trends unambiguously. Chen et al. do, however, state that vortices of
almost equal strength take longer to merge than pairs with differing circulations.

The startling improvement in data collapse when (dimensionless) time to critical
separation, instead of merger, is plotted against d0/rc requires further discussion. The
good collapse supports our ‘self-similarity’ assumption that each measured location
during the progression to merger can be viewed as a new initial condition. Equally,
then, the increased scatter in time to merger points to problems with this assumption,
which relies on neglecting vortex distortion in the new ‘initial’ condition. Taken to-
gether, these data sets imply that distortion is small and/or has negligible effect during
the pre-critical phase, but the ensuing differences in distortion at the critical point
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lead to significant variations in the remaining time to merger. Certainly the vortices
in figure 4 appear almost axisymmetric over most of the initial interaction, but the
same cannot be claimed of the unequal pair in figure 8. A more plausible justification
is that any distortion of a vortex in the pre-critical phase will have a weak effect on its
relatively distant partner, whereas it will become crucially important once vorticity ex-
change starts around d0/rc =3.4. This is an issue that would bear further investigation.

It remains to address the role of three-dimensionality in high-Reynolds-number
vortex merger. It is almost certainly always present, via the elliptic instability, during
the merger phase. However, the reduction in separation during the pre-merger phase
is also crucial, corresponding as it does to a drop in dispersion length that is not
permissible in an unconfined two-dimensional incompressible flow, either viscous or
inviscid. The occurrence of this feature in Chen et al.’s and Devenport et al.’s (1999)
results suggests that it is not an experimental artefact; however, it is possible that
it is somehow due to the confining effect of the wind tunnel walls. We consider this
possibility in detail in Appendix A, where we show first that the array of image
vorticity fields needed to reproduce the inviscid influence of the walls will leave
D unaltered and, second, that viscous effects can only act to decrease it in rather
unusual circumstances not found here. Alternatively, a feel for the importance of the
former can be obtained by considering the velocity induced by an image with overall
circulation 2 m2 s−1 at a distance 1.2m (corresponding to the influence of floor or
ceiling). The velocity difference over a typical initial separation of 7 cm (see figure 5)
is about 0.015 m s−1, which would change the separation by at most 1 mm during the
67 ms that it takes for the vortices to convect 2 m downstream. This upper bound
is well below the 20 mm shown in figure 5, without even having taken account of
the cancelling effect of other images. Finally, the levelling out of D in figure 6 for
d0/rc < 3.4 is consistent with a switch to purely two-dimensional behaviour once the
exchange of vorticity starts, whereas it would not be expected if the earlier decrease
were due to confinement effects.

Further evidence of three-dimensional behaviour can be seen in the co-orbiting
velocity of the vortices, which can be found by differentiating their angular position
with time. This process is prone to introducing noise into the data but it does provide
a general trend. In comparison, a pair of purely two-dimensional vortices would
co-orbit at the predicted angular velocity used to non-dimensionalize time to merger
in equation (3.1). The observed angular velocity is compared to Ωpred throughout the
merger process for all the data sets in figure 11. All three data sets collapse onto a
similar curve. There appears to be a plateau at large separation where the vortices
are co-orbiting at approximately 140% of the predicted velocity. But this enhanced
orbital rate tends to deteriorate on approaching the end of the initial interaction
phase, at which point the vortices are observed to co-orbit slower than the equivalent
two-dimensional case.

We therefore conclude, like Chen et al., that three-dimensionality is significant
throughout the merger process at these Reynolds numbers, in spite of the successful
collapse onto dimensionless variables inspired by a quasi-two-dimensional analysis.
What remains unclear is why such behaviour is not observed at lower Reynolds
numbers. It is unlikely that the range of d0/rc explored was not large enough, as
Cerretelli & Williamson give results up to d0/rc = 8. However, it is worth noting that
none of the experiments they show in their figure 8 have been at sufficiently high
both ReΓ and d0/rc to test their predictions for values of dimensionless merger time
much greater than unity. It may thus be that three-dimensional effects only become
apparent once diffusion would take too long to act.
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Figure 11. Angular velocity normalized by predicted angular velocity as a function of
non-dimensionalized separation.

6. Conclusions and summary
Two co-rotating vortices shed from wings generating lift were observed

experimentally in a wind tunnel. Downstream crossflow-plane measurements were
made for vortices with a range of different initial separations and circulation ratios.
The vortices were observed to maintain a circulation profile consistent with the Lamb–
Oseen model, even after severe distortion. The early interaction is characterized by the
vortices drawing together and growing in radius. Even at the largest initial separation
of over 10 core radii the vortices are observed to draw together from formation
onwards. Meanwhile, they undergo an increase of core radius not fully consistent
with diffusive effects, but maintain their circulation.

The initial interaction phase continues up to the critical separation of d0/rc ≈ 3.4
and is then followed by a vorticity exchange phase. For equal-strength vortices, merger
is completed in a convection time of approximately 80% of the initial rotation period,
as long as the initial separation-to-radius ratio is above 5. (This result corresponds
closely to the findings of Chen et al. 1999.) For smaller values of this ratio, merger
occurs more rapidly. The corresponding results for unequal-strength vortices show
similar asymptotic behaviour, but with a shorter time to merger and more scatter.
The latter, however, can be markedly reduced for both unequal and equal vortex
cases by plotting (dimensionless) time to critical separation-to-radius ratio instead of
to merger.

On the basis of these results, we conclude that the initial interaction, though
well-described by a quasi-two-dimensional parameterization, has important three-
dimensional aspects. The vorticity exchange phase is presumably responsible for the
scatter in (dimensionless) time-to-merger results, and a likely explanation for this is
variation in the degree of vortex distortion (caused by the elliptic instability) at the
point where this phase starts. However, for high-Reynolds-number flows the 80%
estimate for merger time is fairly robust, and appears to apply equally to vortex pairs
generated separately and by single wings in high-lift configuration.

The bulk of the work presented in this paper was originally part of a PhD,
funded by a Fellowship from the Airworthiness Requirements Board of the UK Civil
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Figure 12. Truncated 5 × 5 array of image flows representing the effect of wall confinement:
(a) schematic of real and image vorticity fields; (b) diagram showing repeat pattern. Note that
the origin of coordinates is now placed at the centre of the wind tunnel cross-section.

Aviation Authority (CAA). The authors gratefully acknowledge the support of the
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improvements on the initial version.

Appendix A. The effect of flow confinement on dispersion length
Here we investigate whether the confinement of a two-dimensional flow could lead

to the decrease in dispersion length observed in our experiments. We consider first, in
§ A1, the inviscid case, and then address the contribution of viscous effects in § A2.

A.1. Invariants of a confined, two-dimensional inviscid flow

The normal velocity boundary condition at the walls of a confined flow may be
enforced via the use of image flow fields. In the case of our rectangular wind tunnel
cross-section, of width Ly and height Lz, the required array of image velocity fields is
shown schematically in figure 12. In principle, the images extend to infinity, but here
we observe that arbitrary accuracy may be attained with a large, but finite, set. In
addition, our chosen array has equal numbers of ‘cells’ in the horizontal and vertical
directions, and equal numbers either side of the real flow field.

The vorticity field of our array is given by

ωx(y + iLy, z + jLz) = ωx(y, z), i, j even,

= −ωx(Ly − y, z), i odd, j even,

= −ωx(y, Lz − z), i even, j odd,

= ωx(Ly − y, Lz − z), i, j odd, (A 1)

with −Ly/2 � y � Ly/2, −Lz/2 � z � Lz/2. Its circulation Γa =
∫∫

ω dy dz is given
by the summation of the individual cells’ circulations:

Γa =
∑
i,j

Γij (A 2)
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where Γij = (−1)i+jΓ , with

Γ =

∫ Lz/2

−Lz/2

∫ Ly/2

−Ly/2

ω(y, z) dy dz.

On starting the summation (A 2) at our central cell (the real flow), and then proceeding
over concentric rectangles of cells, we find that Γa = Γ . Now the circulation of the
unconfined array is invariant (see, for example, Batchelor 1967), as, therefore, is the
circulation Γ of our confined flow. This result could, of course, have been obtained
more straightforwardly via Kelvin’s circulation theorem, but has been derived in
this way to illustrate the method, which can now also be applied to the centroid of
vorticity and the dispersion length.

The spanwise location of the array’s vorticity centroid follows from equations (2.2)
and (A 1) as

Y a =
∑
i,j

(−1)i+j [iLy + yij ],

where yij is the spanwise centroid position of the (i, j )th cell, in local coordinates (i.e.
relative to the cell centre). It is given by

yij = Y , i even,

yij = Ly − Y , i odd.

A similar result applies to the vertical centroid coordinate. The only non-constant
terms on which the array centroid location depends are thus the real flow centroid
coordinates, Y and Z, so the invariance of the array centroid (Batchelor 1967) implies
that the centroid of the confined flow is similarly fixed.

Finally, the dispersion length of the array can be calculated from the integral∫ ∫
ωx(y

2 + z2) dy dz over all the images, which yields

D2
a + Y

2

a + Z
2

a =
∑
i,j

(−1)i+j
{
(iLy)

2 + (jLz)
2 + 2iLyyij

+ 2jLzzij + D2 + y2
ij + z2

ij

}
.

Again, the unbounded result that Da is invariant (Batchelor 1967) implies also that
the dispersion length of our confined flow remains constant.

A.2. The influence of viscosity

Once viscous effects are included, the flow is governed by the two-dimensional Navier–
Stokes equations, whose invariants in the absence of boundaries are considered by
Dritschel (1985). It is straightforward to apply the same analysis to the bounded case,
with identical results (namely, that circulation and centroid location are invariant,
and dispersion length increases at a rate 2ν/D) as long as there is negligible vorticity
on the enclosing contour. The existence of a boundary satisfying this condition is
strongly supported by the contour plots of figures 4 and 8; quantitative corroboration
comes from the constancy of our estimated circulation. We therefore conclude that a
reduction in dispersion length due to viscous effects requires conditions not present
in our experiment.
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Appendix B. Approximate characterization of vortex wandering
B.1. Approach

A fully accurate characterization of wandering requires time-resolved measurements
of all three velocity components (Devenport et al. 1996). Such an approach was
beyond the scope of the present study, and an alternative method, applicable to
single-hot-wire data, was therefore developed.

We note, first, that the degree of wandering deduced from Devenport et al.’s
(1999) measurements of a co-rotating pair is essentially the same as that found for
a single vortex in the same facility (Devenport et al. 1996). Furthermore, a hot-
wire oriented azimuthally in a single, steady vortex will respond to the streamwise
velocity component only. We therefore base our method on single-wire measurements
behind one of the vortex-generating wings. The streamwise velocity mean and RMS
fluctuation are characterized by two line traverses through the vortex: one horizontal
(with the wire vertical) and one vertical (with the wire horizontal). The hot-wire output
is anti-alias filtered at 500 Hz and sampled at 1200 Hz, for 150s. The formulation for
the deduction of wandering amplitudes from these data is presented in the following
section. The results, at streamwise locations 5 and 13 chords behind the wing, are
given in § B.3.

B.2. Formulation

The ability of the azimuthally oriented hot wire to reject both crossflow velocity
components must first be examined more carefully. For example, on the vertical
traverse with horizontal wire, the measured velocity will actually be

q =
√

(U + u)2 + w2, (B 1)

where u and w are the x- and z-wise departures from the free stream, the latter arising
solely due to the wandering of the vortex. However, as long as u/U , w/U � 1, one
has

q ≈ U + u +
1

2

w2

U
(B 2)

and

q2 − q2 ≈ (u − u)2, (B 3)

where the overbars denote average values. The mean and RMS fluctuation of the
hot-wire measurements are thus expected to provide good approximations to the
corresponding properties of the streamwise velocity.

Preliminary inspection of the fluctuation spectra near the vortex core showed that
RMS levels here were almost entirely due to low-frequency components (below 50 Hz),
and were thus dominated by wandering contributions. Devenport et al. (1996) have
pointed out that Gaussian wandering can lead to a measured Gaussian structure,
even if the underlying vortex is not Gaussian. In spite of this caveat, we restrict
consideration to a vortex with a streamwise velocity excess given by

u(y − yc, z − zc) = UJ exp

[
− (y − yc)

2 + (z − zc)
2

σ 2

]
, (B 4)

where (yc, zc) are the vortex centre coordinates, and σ is the (axial) core length scale.
Then (Devenport et al. 1996) the average measured excess is

um(y, z) =

∫ ∫
u(y − yc, z − zc)p(yc, zc) dyc dzc, (B 5)
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where p(yc, zc) is the probability density function of the wandering. Anisotropic
Gaussian wandering corresponds to

p(yc, zc) =
1

2πσ1σ2

exp

[
− Y 2

c

2σ 2
1

− Z2
c

2σ 2
2

]
, (B 6)

with σ1, σ2 the RMS wandering amplitudes in the principal axis directions Yc, Zc. The
latter are centred on the mean vortex position and rotated through an angle φ, i.e.

Yc = (yc − yc) cosφ + (zc − zc) sinφ, (B 7)

Zc = −(yc − yc) sinφ + (zc − zc) cosφ. (B 8)

Equation (B 5) is straightforward to evaluate analytically. In particular, for the
horizontal and vertical traverses, we find

um(y, zc) =
UJ σ 2√(

σ 2 + 2σ 2
1

)(
σ 2 + 2σ 2

2

)exp

[
− (y − yc)

2

σ 2 + 2σ 2
1

cos2 φ − (y − yc)
2

σ 2 + 2σ 2
2

sin2 φ

]

(B 9)
and

um(yc, z) =
UJ σ 2√(

σ 2 + 2σ 2
1

)(
σ 2 + 2σ 2

2

)exp

[
− (z − zc)

2

σ 2 + 2σ 2
1

sin2 φ − (z − zc)
2

σ 2 + 2σ 2
2

cos2 φ

]
.

(B 10)
For σ1 = σ2, these expressions reduce to the isotropic wandering result given by
Devenport et al. (1996).

The RMS streamwise velocity fluctuation can be written solely in terms of the
velocity excess:

urms =

√
u2

m − u2
m. (B 11)

Here u2
m is derived in identical manner to um. When the integral corresponding to

(B 5) is evaluated, we find

u2
m(y, zc) =

U 2
J σ 2√(

σ 2 + 4σ 2
1

)(
σ 2 + 4σ 2

2

)exp

[
−

2
(
y − yc

)2

σ 2 + 4σ 2
1

cos2 φ − 2(y − yc)
2

σ 2 + 4σ 2
2

sin2 φ

]

(B 12)
and

u2
m(yc, z) =

U 2
J σ 2√(

σ 2 + 4σ 2
1

)(
σ 2 + 4σ 2

2

)exp

[
−2(z − zc)

2

σ 2 + 4σ 2
1

sin2 φ − 2(z − zc)
2

σ 2 + 4σ 2
2

cos2 φ

]
.

(B 13)

Equations (B 9), (B 10), (B 12) and (B 13) form the basis of the wandering-amplitude
estimation method. This has two parts: first the measured mean velocities are fitted
to Gaussian profiles, and then the measured RMS velocities are fitted to (B 11), using
either (B 9) and (B 12) or (B 10) and (B 13) for its component terms. A proprietary
nonlinear least-squares routine is used for these calculations.
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Figure 13. Measured (—) and fitted (- - -) mean velocities: (a) horizontal traverse, with best-fit
parameters yc = 0.060m, U = 27.0 m s−1, ŨJm = 0.075, ry =0.0064 m; (b) vertical traverse, with

best-fit parameters zc = 0.620 m, U = 29.0 m s−1, ŨJm = 0.075, rz = 0.0054m.

The mean velocity profiles yield the best-fit parameters ŨJm, ry and rz, where

ŨJm =
UJ

U

σ 2√(
σ 2 + 2σ 2

1

)(
σ 2 + 2σ 2

2

) , (B 14)

1

r2
y
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cos2 φ
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1

+
sin2 φ

σ 2 + 2σ 2
2

, (B 15)

1

r2
z

=
sin2 φ

σ 2 + 2σ 2
1

+
cos2 φ

σ 2 + 2σ 2
2

. (B 16)

The parameters U , yc and zc are also derived from this process, rather than specified
in advance. Interpolation between several linear traverses is employed to derive an
estimated measured profile at the required value of yc (for vertical traverses) or zc

(for horizontal traverses). As yc and zc are not known exactly in advance, one or two
manual iterations are necessary, but convergence is rapid.

The RMS velocity profiles are then used to find the best-fit values for UJ /U , σ ,
σ1, σ2 and φ, subject to the constraints (B 14)–(B 16). In practice, this is achieved
by allowing the parameters σ1 and σ2 to vary, with the corresponding values of the
remaining terms found by solving (B 15), (B 16) for σ , φ, and then (B 14).

B.3. Results

Figure 13 shows the measured and fitted mean velocity profiles for both horizontal
and vertical traverses at 13 chords downstream. The corresponding parameter values
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Figure 14. Measured (—) and fitted (- - -) RMS velocities: (a) horizontal traverse; (b) vertical
traverse. Best-fit parameters σ1 = 0.0030 m, σ2 = 0.0018 m, background level 0.014U . Con-
strained parameters (UJ /U ) = 0.114, σ = 0.0048, φ = 2.6◦.

Downstream σ1 (m) σ2 (m) φ (deg.)
distance

5c 0.0016 0.0009 9.4
13c 0.0030 0.0018 2.6

Table 1. Estimated wandering parameters

are given in the caption. Although the vertical traverse measurements exhibit some
asymmetry, perhaps due to the wing wake, the data generally show a good match to
Gaussian profiles.

Figure 14 shows the corresponding results for the RMS velocities. (Note that a
background level has been included in the fit.) Here the detailed comparison between
the theoretical forms and the data is less good. The overall topology is, however,
sufficiently similar to support the form assumed for the axial velocity, and the use
of single hot-wire measurements to obtain this quantity. The derived values are
approximately twice those found by Devenport et al. (1996) at the same downstream
location.

The analysis for the measurements taken 5 chords downstream proceeds identically,
and shows similar levels of agreement. The wandering parameters for both
downstream stations are summarized in table 1.
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422 T. Bertényi and W. R. Graham

Meunier, P., Ehrenstein, U., Leweke, T. & Rossi, M. 2002 A merging criterion for two-dimensional
co-rotating vortices. Phys. Fluids 14, 2757–2766.

Meunier, P., Le Dizès, S. & Leweke, T. 2005 Physics of vortex merging. C. R. Physique 6, 431–450.

Meunier, P., & Leweke, T. 2005 Elliptic instability of a co-rotating vortex pair. J Fluid Mech. 533,
125–159.

Ramaprian, B. R. & Zheng, Y. 1997 Measurements in rollup region of the tip vortex from a
rectangular wing. AIAA J. 35, 1837–1843.

Roberts, C. L., Vicroy, D. D. & Smith, S. T. 2000 Flight test analysis of the forces and moments
imparted on a B737-100 aircraft during wake vortex encounters. AIAA Paper 2000–3908.

Rossow, V. J. 1977 Convective merging of vortex cores in lift-generated wakes. J. Aircraft 14,
283–290.

Rossow, V. J. 1999 Lift-generated vortex wakes of subsonic transport aircraft. Prog. Aerospace Sci.
6, 507–660.

Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.

Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30, 107–138.

Spall, R. E. 2001 Numerical study of a wing-tip vortex using the Euler equations. J. Aircraft 38,
22–27.

Trieling, R. R., Velasco Fuentes, O. U. & van Heijst, G. J. F. 2005 Interaction of two unequal
corotating vortices. Phys. Fluids 17, 087103.


